skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choreño‐Parra, Eduardo_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the ‘Gadgil effect’ and ‘priming effect’, respectively. However, it is unclear which one predominates globally.We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs.Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type.Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect. 
    more » « less